If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+7x-160=0
a = 5; b = 7; c = -160;
Δ = b2-4ac
Δ = 72-4·5·(-160)
Δ = 3249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3249}=57$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-57}{2*5}=\frac{-64}{10} =-6+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+57}{2*5}=\frac{50}{10} =5 $
| 3(x+5)–4=8. | | 17z-8=14z+19 | | x+(x+2)=x+4+31 | | 3a+1=28 | | 3x^2+15x-45=0 | | 15=3m-15 | | 21=8n+5 | | 6(3+q)=18 | | 3x-2x=222x=22x=22÷2 | | 9t-2=7 | | 9m^2-24m-128=0 | | 9m^2-16m-128=0 | | 5t(7-t)=0 | | 20x-30=60 | | 3(7-y)-6+2=-21 | | X+2x=3x+2 | | 3/5x=72 | | 2x+15=4.5 | | 5+60/x=25 | | 2x^2+24-49x=0 | | 7p-2=6p-1 | | -4x+1=-4x+231 | | -5x-1=2-x | | -4x+10=-4x+25 | | 17p-2=49 | | 3x-2=16x^2-24+9 | | x=-4x^2+46x-126 | | (3x-5)(7-5x)+(5x+2)(3x-2)-2=0 | | 7x+6=5/(2x+3) | | 8x-21/4=3x+7 | | 35n-34n=4/7 | | x+4/2x+1=0 |